Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Vaccines (Basel) ; 11(2)2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2217110

ABSTRACT

The BNT162b2 COVID-19 vaccine is composed of lipid-nanoparticles (LNP) containing the mRNA that encodes for SARS-CoV-2 spike glycoprotein. Bronchospasm has been reported as an early reaction after COVID-19 mRNA vaccines in asthmatic patients. The aim of this study was to investigate the acute impact of BNT162b2 in a human ex vivo model of severe eosinophilic asthma. Passively sensitized human isolated bronchi were challenged with the platelet-activating factor to reproduce ex vivo the hyperresponsiveness of airways of patients suffering from severe eosinophilic asthma. BNT162b2 was tested on the contractile sensitivity to histamine and parasympathetic activation via electrical field stimulation (EFS); some experiments were performed after mRNA denaturation. BNT162b2 increased the resting tone (+11.82 ± 2.27%) and response to histamine in partially contracted tissue (+42.97 ± 9.64%) vs. the control (p < 0.001); it also shifted the concentration-response curve to histamine leftward (0.76 ± 0.09 logarithm) and enhanced the response to EFS (+28.46 ± 4.40%) vs. the control. Denaturation did not significantly modify (p > 0.05) the effect of BNT162b2. BNT162b2 increases the contractile sensitivity to histamine and parasympathetic activation in hyperresponsive airways, a detrimental effect not related to the active component but to some excipient. A possible candidate for the bronchospasm elicited by BNT162b2 could be the polyethylene glycol/macrogol used to produce LNP.

2.
Expert Opin Pharmacother ; 24(3): 315-330, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2166106

ABSTRACT

INTRODUCTION: Long-COVID is a condition characterized by the permanence of symptoms beyond 4 weeks after an initial infection. It affects 1 out of 5 people and is loosely related to the severity of acute infection and pathological mechanisms, which are yet to be understood. AREAS COVERED: This article looks at currently available and under-studied therapies for long-COVID syndrome. It particularly gives focus to ongoing trials and reviews the underlying mechanisms. A comprehensive literature search was performed on PubMed and clincaltrial.gov of clinical trials concerning the management of long-COVID syndrome. EXPERT OPINION: 'Long-COVID' syndrome is a new emergency characterized by several symptoms such as fatigue, dyspnea, cognitive and attention disorders, sleep disorders, post-traumatic stress disorder, muscle pain, and concentration problems. Despite the many guidelines available to date, there are no established treatments of long-COVID. Pharmacological research is studying known drugs that act on the reduction or modulation of systemic inflammation, or innovative drugs used in similar pathologies. Rehabilitation now seems to be the safest treatment to offer, whereas we will have to wait for the pharmacological research trials in progress as well as plan new trials based on a better understanding of the pathogenic mechanisms.


Subject(s)
COVID-19 , Stress Disorders, Post-Traumatic , Humans , Post-Acute COVID-19 Syndrome
3.
J Clin Med ; 11(24)2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2163468

ABSTRACT

Background: Long-term sequelae, called Long-COVID (LC), may occur after SARS-CoV-2 infection, with unexplained dyspnoea as the most common symptom. The breathing pattern (BP) analysis, by means of the ratio of the inspiratory time (TI) during the tidal volume (VT) to the total breath duration (TI/TTOT) and by the VT/TI ratio, could further elucidate the underlying mechanisms of the unexplained dyspnoea in LC patients. Therefore, we analysed TI/TTOT and VT/TI at rest and during maximal exercise in LC patients with unexplained dyspnoea, compared to a control group. Methods: In this cross-sectional study, we enrolled LC patients with normal spirometry, who were required to perform a cardio-pulmonary exercise test (CPET) for unexplained dyspnoea, lasting at least 3 months after SARS-CoV-2 infection. As a control group, we recruited healthy age and sex-matched subjects (HS). All subjects performed spirometry and CPET, according to standardized procedures. Results: We found that 42 LC patients (23 females) had lower maximal exercise capacity, both in terms of maximal O2 uptake (VO2peak) and workload, compared to 40 HS (22 females) (p < 0.05). LC patients also showed significantly higher values of TI/TTOT at rest and at peak, and lower values in VT/TI at peak (p < 0.05). In LC patients, values of TI/TTOT at peak were significantly related to ∆PETCO2, i.e., the end-tidal pressure of CO2 at peak minus the one at rest (p < 0.05). When LC patients were categorized by the TI/TTOT 0.38 cut-off value, patients with TI/TTOT > 0.38 showed lower values in VO2peak and maximal workload, and greater values in the ventilation/CO2 linear relationship slope than patients with TI/TTOT ≤ 0.38 (p < 0.05). Conclusions: Our findings show that LC patients with unexplained dyspnoea have resting and exertional BP more prone to diaphragmatic fatigue, and less effective than controls. Pulmonary rehabilitation might be useful to revert this unpleasant condition.

4.
J Clin Med ; 11(17)2022 08 23.
Article in English | MEDLINE | ID: covidwho-1997685

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to cause long-term pulmonary sequelae. OBJECTS: The aim of this study was to evaluate the consequences of the SARS-CoV-2 infection on pulmonary function and on the 6-min walk test related to the severity of the disease. METHODS: A cross-sectional study was conducted at the "Policlinico Tor Vergata" Academic Hospital (Rome, Italy), including 75 patients evaluated in post-COVID clinics at the Respiratory Units between November 2020 and September 2021. Complete pulmonary function tests, 6-min walk tests and persistence of symptoms were performed. RESULTS: Of the 75 subjects, 23 had mild, 16 moderate, 26 severe and 10 very severe COVID-19, classified according to WHO. Very severe patients had a lower FVC (100 ± 10%pr) compared to the other groups (116 ± 16%pr, 116 ± 13%pr, 122 ± 20%pr from mild to severe; p < 0.05) and a lower TLC (94 ± 13%pr) compared to the others (102 ± 10%pr, 108 ± 15%pr, 108 ± 12%pr from mild to severe; p < 0.05). DLco and DLco/VA were similar among groups. At the 6MWT, distance, rest and nadir SpO2 were similar among groups, but all groups presented a significant decrease in SpO2 from rest to nadir (Rest SpO2: 97.0 ± 1.0% vs. Nadir SpO2: 93.6 ± 2.7%, p < 0.01). A positive correlation was found between desaturation and delta SpO2 (rest-nadir) (R: 0.29, p < 0.05) and the Distance Desaturation Product (R: 0.39, p < 0.01). CONCLUSIONS: These results showed that, although the PFTs are within the normal range, there is still a mild restrictive spirometric pattern after six months in very severe subjects. Moreover, the only persistent pathological sequalae of SARS-CoV-2 infection were a mild desaturation at 6MWT, despite the severity of the infection.

5.
Respiration ; 101(3): 272-280, 2022.
Article in English | MEDLINE | ID: covidwho-1865199

ABSTRACT

BACKGROUND: The presence of interstitial pneumonia in coronavirus disease 2019 (COVID-19) patients, as diagnosed through laboratory, functional, and radiological data, provides potential predicting factors of pulmonary sequelae. OBJECTIVES: The objectives were the creation of a risk assessment score for pulmonary sequelae at high-resolution computed tomography (HRCT) through the assessment of laboratory data, lung function, and radiological changes in patients after the onset of COVID-19 interstitial pneumonia and the identification of predictive factors. METHODS: We enrolled 121 subjects hospitalized due to COVID-19 pneumonia in our study. Clinical features, Charlson Comorbidity Index (CCI) score, HRCT score, and blood chemistry data at hospital admission, as well as HRCT score, pulmonary function testing values, exercise capacity by means of a 6-Minute Walk Test (6MWT), and dyspnea perception by the modified Medical Research Council (mMRC) at 4-month follow-up, were all recorded. The variables were elaborated in order to create a predictive model to identify patients at high risk of pulmonary sequelae at HRCT. RESULTS: At the time of follow-up visit, 63% of patients had functional abnormality (diffusion lung capacity and/or total lung capacity <80% of predicted). Age, BMI, CCI, D-dimer, 6MWT, and mMRC were included in the COVID-19 Sequelae Score (COSeSco, ranging 0-15), which was able to individuate COVID-19 patients with radiologic sequelae (HRCT score >10%) at follow-up. The most revelatory COSeSco value that was found to intercept the highest sensitivity (100%) and specificity (77%) was 2. CONCLUSION: The COSeSco - comprising age, BMI, comorbidities, D-dimer, walking distance, and dyspnea perception - makes it possible to identify particularly at-risk COVID-19 patients who are likely to develop pulmonary sequelae assessed by HRCT.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Lung/diagnostic imaging , Lung/physiopathology , Respiratory Function Tests/methods , Risk Assessment , SARS-CoV-2
6.
J Clin Med ; 10(8)2021 Apr 10.
Article in English | MEDLINE | ID: covidwho-1526831

ABSTRACT

A clinical interpretation of the Randomized Evaluation of COVID-19 Therapy (RECOVERY) study was performed to provide a useful tool to understand whether, when, and to whom dexamethasone should be administered during hospitalization for COVID-19. A post hoc analysis of data published in the preliminary report of the RECOVERY study was performed to calculate the person-based number needed to treat (NNT) and number needed to harm (NNH) of 6 mg dexamethasone once daily for up to 10 days vs. usual care with respect to mortality. At day 28, the NNT of dexamethasone vs. usual care was 36.0 (95%CI 24.9-65.1, p < 0.05) in all patients, 8.3 (95%CI 6.0-13.1, p < 0.05) in patients receiving invasive mechanical ventilation, and 34.6 (95%CI 22.1-79.0, p < 0.05) in patients receiving oxygen only (with or without noninvasive ventilation). Dexamethasone increased mortality compared with usual care in patients not requiring oxygen supplementation, leading to a NNH value of 26.7 (95%CI 18.1-50.9, p < 0.05). NNT of dexamethasone vs. usual care was 17.3 (95%CI 14.9-20.6) in subjects <70 years, 27.0 (95%CI 18.5-49.8) in men, and 16.2 (95%CI 13.2-20.8) in patients in which the onset of symptoms was >7 days. Dexamethasone is effective in male subjects < 70 years that require invasive mechanical ventilation experiencing symptoms from >7 days and those patients receiving oxygen without invasive mechanical ventilation; it should be avoided in patients not requiring respiratory support.

8.
Vaccines (Basel) ; 9(3)2021 Mar 05.
Article in English | MEDLINE | ID: covidwho-1129796

ABSTRACT

Background: There are no studies providing head-to-head comparison across SARS-CoV-2 vaccines. Therefore, we compared the efficacy of candidate vaccines in inducing neutralizing antibodies against SARS-CoV-2. Methods: A network meta-analysis was performed to compare the peak levels of SARS-CoV-2 neutralizing antibodies across candidate vaccines. Data were reported as standardized mean difference (SMD) since the outcome was assessed via different metrics and methods across the studies. Results: Data obtained from 836 healthy adult vaccine recipients were extracted from 11 studies. BBIBP-CorV, AZD1222, BNT162b2, New Crown COVID-19, and Sputnik V induced a very large effect on the level of neutralizing antibodies (SMD > 1.3); CoVLP, CoronaVac, NVX-CoV2373, and Ad5-nCoV induced a large effect (SMD > 0.8 to ≤1.3); and Ad26.COV2.S induced a medium effect (SMD > 0.5 to ≤0.8). BBIBP-CorV and AZD122 were more effective (p < 0.05) than Ad26.COV2.S, Ad5-nCoV, mRNA-1237, CoronaVac, NVX-CoV2373, CoVLP, and New Crown COVID-19; New Crown COVID-19 was more effective (p < 0.05) than Ad26.COV2.S, Ad5-nCoV, and mRNA-1237; CoronaVac was more effective (p < 0.05) than Ad26.COV2.S and Ad5-nCoV; and Sputnik V and BNT162b2 were more effective (p < 0.05) than Ad26.COV2.S. In recipients aged ≤60 years, AZD1222, BBIBP-CorV, and mRNA-1237 were the most effective candidate vaccines. Conclusion: All the candidate vaccines induced significant levels of SARS-CoV-2 neutralizing antibodies, but only AZD1222 and mRNA-1237 were certainly tested in patients aged ≥70 years. Compared with AZD1222, BNT162b and mRNA-1237 have the advantage that they can be quickly re-engineered to mimic new mutations of SARS-CoV-2.

9.
Expert Rev Respir Med ; 15(4): 561-568, 2021 04.
Article in English | MEDLINE | ID: covidwho-922369

ABSTRACT

Background: The comorbidities and clinical signs of coronavirus disease 2019 (COVID-19) patients have been reported mainly as descriptive statistics, rather than quantitative analysis even in very large investigations. The aim of this study was to identify specific patients' characteristics that may modulate COVID-19 hospitalization risk.Research design and methods: A pooled analysis was performed on high-quality epidemiological studies to quantify the prevalence (%) of comorbidities and clinical signs in hospitalized COVID-19 patients. Pooled data were used to calculate the relative risk (RR) of specific comorbidities by matching the frequency of comorbidities in hospitalized COVID-19 patients with those of general population.Results: The most frequent comorbidities were hypertension, diabetes mellitus, and cardiovascular and/or cerebrovascular diseases. The RR of COVID-19 hospitalization was significantly (P < 0.05) reduced in patients with asthma (0.86, 0.77-0.97) or chronic obstructive pulmonary disease (COPD) (0.46, 0.40-0.52). The most frequent clinical signs were fever and cough.Conclusion: The clinical signs of hospitalized COVID-19 patients are similar to those of other infective diseases. Patients with asthma or COPD were at lower hospitalization risk. This paradoxical evidence could be related with the protective effect of inhaled corticosteroids that are administered worldwide to most asthmatic and COPD patients.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , COVID-19/therapy , Hospitalization/statistics & numerical data , Pulmonary Disease, Chronic Obstructive/drug therapy , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Asthma/physiopathology , COVID-19/physiopathology , Female , Humans , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Risk Factors
10.
Respir Res ; 21(1): 286, 2020 Oct 30.
Article in English | MEDLINE | ID: covidwho-895006

ABSTRACT

It has been recently hypothesized that infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may lead to fibrotic sequelae in patients recovering from coronavirus disease 2019 (COVID-19). In this observational study, hospitalized patients with COVID-19 had a HRCT of the chest performed to detect the extension of fibrotic abnormalities via Hounsfield Units (HU). At follow-up, the lung density significantly improved in both lungs and in each lobe of all patients, being in the normal range (- 950 to - 700 HU). This study provides preliminary evidence that hospitalized patients with mild-to-moderate forms of COVID-19 are not at risk of developing pulmonary fibrosis.


Subject(s)
Coronavirus Infections/complications , Disease Progression , Pneumonia, Viral/complications , Pulmonary Fibrosis/diagnostic imaging , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/therapy , Aged , COVID-19 , Cohort Studies , Combined Modality Therapy , Confidence Intervals , Coronavirus Infections/diagnosis , Female , Follow-Up Studies , Hospitalization/statistics & numerical data , Hospitals, University , Humans , Italy , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Prospective Studies , Pulmonary Fibrosis/epidemiology , Pulmonary Fibrosis/pathology , Radiography, Thoracic/methods , Risk Assessment , Severe Acute Respiratory Syndrome/diagnosis
11.
Respir Med ; 171: 106114, 2020 09.
Article in English | MEDLINE | ID: covidwho-693341

ABSTRACT

Coronavirus disease 2019 (COVID-19) is highly infectious. It has been highlighted that if not expertly and individually managed with consideration of the vasocentric features, a COVID-19 patient with an acute respiratory distress syndrome (CARDS) may eventually develop multiorgan failure. Unfortunately, there is still no definite drug for CARDS that is capable of reducing either short-term or long-term mortality and no specific treatments for COVID-19 exist right now. In this narrative review, based on a selective literature search in EMBASE, MEDLINE, Scopus, The Cochrane Library, Web of Science, and Google Scholar and ClinicalTrials.gov, we have examined the emerging evidence on the possible treatment of CARDS. Although numerous pharmacologic therapies to improve clinical outcomes in CARDS have been studied also in clinical trials, none have shown efficacy and there is great uncertainty about their effectiveness. There is still no recommendation for the therapeutic use of any specific agent to treat CARDS because no drugs are validated to have significant efficacy in clinical treatment of COVID-19 patients in large-scale trials. However, there exist a number of drugs that may be useful at least in some patients. The real challenge now is to link the right patient to the right treatment.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Respiratory Distress Syndrome , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Humans , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Treatment Outcome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL